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Abstract. The study deals with the problem aming to formaly reduce a complex finite element structural 
model to a simpler one. As a sample task, the reduction of a girder model to the simpler equivalent membrane 
model has been investigated. The coincidence of model displacements at given loading condirtions is 
employed as a criterion of mutual adequacy of the two models. Both static and dynamic displacements at 
selected reference points have been used in the expression of the penalty-type target function, the minimum 
of which indicates the best fit between the original and reduced models. The target function has been 
miminized by using the geometrical and physical parameters of a typical membrane element as optimization 
variables. The calculations have been performed in MATLAB environment. The validity of obtained 
parameters of the membrane model has been tested by investigate the original and reduced structures of 
different geometrical shapes at complex loadings. 
Keywords: Finite element models, reduction, parameter identification  

1 INTRODUCTION 
Finite element techniques in principle enable to analyse structures of any level of complexity, including 

their essentially non-linear behaviour, peculiarities of internal texture, etc. [4]. However, highly adequate models 
are often generated on expense of very complex structures, huge dimensionalities and internal interactions, 
which require very large and often prohibitive amounts of computational resources. Building simplified 
(reduced) computational models is a common practice enabling to obtain solutions with practically acceptable 
costs. 

As an example, a woven textile structure can be represented by using models of different levels of 
detalization. A woven structure composed of shell elements[1], simpler and more efficient combined particles 
model[2], orthotropic membrane models[3], have been employed in order to represent the dynamic behavior of 
textile cloths under conditions of mechanical impact and penetration. A special attention and prospectives 
deserve models, in which central and distant zones of the same structure are presented by different models. As in 
[3], the zone of ballistic interaction of the textile structure has been modeled by using the complex contact model 
of a woven structure, meanwhile the distant zones have been presented by membrane elements. The coupling 
between the zones has been implemented by means of the tie constraint. The main purpose of this combination 
was to implement the “almost infinite” surrounding. 

As a rule, such combined models are obtained by using a lot of engineering intuition and basing on 
profound knowledge of physical properties of the investigated phenomena. More regular approaches are 
necessary, which enable to synthesize simplified or reduced models of internally complex structures. The 
parameters of the reduced model can be adjusted by performing the minimization of error functions, 
quantitatively indicating the non-coincidence of the response between the simplified and reference models. An 
alternative approach can be based on neural network techniques in order to synthesize the models exhibiting the 
required structural response [6]. 

In this work, we demonstrate a procedure and results of synthesis of the continuous membrane model, 
which imitates the behavior of the girder structure under static, as well as, dynamic loadings. 

2 PROBLEM FORMULATION 
The analyzed source structure is a 2D girder composed of tiny beam elements, and the approximating 

reduced model is a planar membrane. The girder consists of rods of uniform width and thickness. It is necessary 
to find the parameters of the equivalent orthotropic membrane. Assume that the membrane model presents a 
satisfactory approximation of the girder if the displacements of the nodes at the same loading are obtained nearly 
the same by using both models. 

Consider rectangular plate and rectangular girder having identical dimensions. The geometry of the 
girder is described by width h, thickness b and spacing N. Physcial parameters used in the small displacement 
elasticity model are Young’s modulus E  and mass density ρ . The membrane model is characterized by 

thickness ms  and orthotropic material parameters: Young’s modules 2211, mm EE , Poisson’s ratios 2112 , mm νν , 

shear module 12mG  and mass density mρ . 
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a)  b)  
Figure 1. The girder (a) and equivalent steel membrane (b). 

Membrane parameters mν , mE , mG  and ms  have to be established, which enable the membrane to 
exhibit the same or similar behaviour in terms of displacements of respective element nodes at a given loading. 

a)    b)     c) d  
Figure 2. The finite element models: a) 1st analysis model; b) 2nd analysis model; 

c) 1st test model; d) 2nd test model. 
As a measure of quality of the approximation of the girder model by equivalent membrane model we 

employ the minimum of a penalty-type target function expressed as a sum of squares of differences between the 
displacements of corresponding nodes of each model. The static as well as dynamic behaviour of the two 
structures has been analyzed. The schemes of two static loading cases are presented in Fig.2 a) and b), where 
both structures have been exposed to static load F and the differences of displacements of 4 selected nodes have 
been included into the penalty function expression. 

The obtained parameters of the equivalent membrane shall be tested by using several freely selected test 
models(loading cases) two of which are presented in  Fig.2 c) and d). 

In the case of dynamic analysis, the differences between displacements of nodes are minimized at 
selected time moments. The analysis has been performed by using ANSYS and MATLAB software. The 
displacements obtained in ANSYS have been used when forming the target function, which subsequently has 
been minimized by employing MATLAB function FMINCON(). 

3 ANALYSIS OF RESULTS 

3.1 Static analysis 
Further, the analysis of the statics of selected girder as well as parameters of membrane resulted in the 

optimization, are presented. In order to facilitate the optimization problem assume 2211 mmg EEE == , 

02112 == mm νν , 
mg ρρ =  and bh = . Assume the girder rods being thin enough to maintain the mechanical 

features of the girder: 
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where L  is the side length of the rectangular element and N – number of divisions of the side. In this 
example, numbers of divisions of the plate and the girder are selected the same, however, generally the grid 
spacing may be much smaller than the side length of the membrane element. 

Consider the models in Fig.2. In the first load case (LC1) (Fig.2a), all nodes of the bottom side are fixed 
meanwhile all nodes of the right hand side are exposed to forces imitating distributed loading along Ox direction.  
The second load case(LC2) model (Fig.2b) the top side is exposed to distributed loading along Oy direction. 

The target function reads as follows: 
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where ip1 , ip2  are the vectors of i-node displacements of the 1st and 2nd models, 2)1( += Nn  - total number of 
the nodes of each model.  

After the minimization of (2) we obtained the relationship of optimum thickness ms  of the equivalent 
membrane against the girder rod thickness b and against the shear module mG . By applying the least squares 
approximation (LSA), the square and linear relationships between the parameters optimization variables has 
been established as in Fig. 3. 

a)  b)  
Figure 3. The pairs of optimal parameters (blue points) of the girder the equivalent membrane and the regression 

curves (red lines), (a) – square fit; (b) – linear fit. 
The analytical expressions of the regression curves presented in Fig.3 read as  

),(bNN) ,,(bN ) ,(NG(N,b)G

N),,,(bs(N,b)s

m

m

45029100013268181106260,30929310

1088112751
102283

2

⋅⋅+⋅−⋅+⋅−⋅==

⋅+⋅==  (3) 

The estimation of derived formulas (3) against calculated pairs of optimum parameters at different 
values of grid parameter b and side division N is presented in Fig. 4. 

 

 
Figure 4. 2D regressions of depending parameters. 

It follows from Fig.4 that the increase of the mesh division parameter N, makes each rod of the girder 
thinner, see formula (1). The corresponding values of the thickness of the equivalent membrane and its shear 
module tend to decrease. The deviations of calculated optimum values of the membrane parameters with respect 
to the obtained regression (3) have been evaluated as  
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where n – total number of nodes of each model, i
y

i
x pp ,  are  x  and y  displacements of node i of the membrane, 

i
y

i
x qq ,  are  x and y displacements of node i of the girder. 

Further, the evaluation of the derived (3) dependencies is presented. The size of tested models was 
38=N , and the values b of the girder were chosen in accordance with the formula 

N
Lb
⋅

=
8

 . The parameters of 

equivalent membrane have been calculated according to formula (3). The same loading of the model has been 
used in all investigated cases as in Fig.2 a) and b). The estimation of the deviations of membrane displacements 
from the reference displacements of the girder is presented in Fig. 5. 
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a)  b)  
Figure 5. The estimated values of differences of displacements of respective nodes of membrane and girder by using  

1st (a) and 2nd (b) models(Fig.2). 
The largest deviations of the first model (Fig. 5a) are at the nodes in the vicinity of the constrained side 

of the membrane. On the contrary, in the second model (Fig. 5b) the deviations at the nodes nodes in the vicinity 
of the constrained side of the membrane are the smallest. 

The next numerical experiment is performed by loading the same girder and equivalent membrane by 
means of the force applied in the plane xOy at the corner at angle 450, (model Fig.2c) Fig. 6a). Figure 6b) is 
obtained using model (model Fig.2d) by applying the force at the mid-side node. 

a)  b)  
Figure 6. The estimated values of differences of displacements of respective nodes of membrane and girder with free 

selected models. 
We have found the equivalent membrane for the selected girder by considering the extra loading cases 

(models Fig. 2c) and d) ) and determined that the deviations of relevant nodes have increased up to 6 times. The 
maximum value of relative displacenment deviation between the two models was equal to approximately 16%. 
The biggest deviations of displacements appear at the nodes affected by the force. In order to reduce the 
deviations we should include the displacements of latter two models into the target function to be optimized. 

The estimations of displacement differences between the two models at first loading case is presented in 
Fig. 7a, b for the coincident (N=38) and non-coincident (N=24) mesh. 

a)  b)  
Figure 7. The estimated values of differences of displacements of respective nodes of eqivavent membrane and 

refernce girder at coincident meshing N=38 (a) and non-coincident meshing N=24 (b). 
 

It can be observed that the maximum estimation values did not change, however, the estimations at individual 
nodes may change significantly (up to 6 times in this case). 
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3.2 Dynamic analysis 
Here we extend the regression formulas determined in section 3.1 for the static analysis to the dynamic 

analysis. Time is introduced as continuous variable [0; ]t T∈  and optimization is performed by using a new 
target function, obtained by integrating expression (2) over time. Now P and Q are three-dimensional matrices, 
in which nodal displacements are stored at all time steps kt  . The integration over time is performed numerically 
by using the 5th order Newton – Cottes quadrature formula [5]. 

The time law of the loading is read as 
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dynamic analysis equal to the time necessary for the longitudinal elastic wave to travel distance L equal to the 

side length of the model. The sine-pulse shaped time law of force F we assumed to have period 
2F
TT ≈ . Forces 

at individual nodes have been applied ( )
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tFF π  . 

We select 8 reference nodes (Fig. 8), at which displacement time laws of both structures are compared 
against each other. 

 
Figure 8. The reference nodes of the model. 

In order to perform the minimization of the penalty type target function, the parameters of the 
membrane are calculated by using formula (3) derived for the static analysis case. In the simplest case we are 
using only one optimization variable as equivalent mass density mρ of the membrane. The mesh 48×48 in both 
structures is employed. 

We use FMINCON() function in order to determine ∗
mρ  value. The minimization process is shown in 

Fig. 9. 

 
Figure 9. The dependence of membrane’s optimizable parameter variation on iterations. 

 

We get the equivalent membrane having the density 067,2,16125
*

3
* ≈=

g

m
m m

kg
ρ
ρρ . 

Fig.10 presents the magnitudes of displacements caused by the transient vibration processs (the wave 
traveling along Ox direction, Fig. 2a) ) at several selected time moments in the girder(a) and equivalent 
membrane structure (b). The two graphs are practically equivalent to each other. Fig.11 presents errors of 
displacements of reference nodes. 
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a)  b)  
Figure 10. The magnitudes of displacements at several selected time moments in the girder (a) and equivalent 

membrane structure (b). 
 

 
Figure 11. Differences between corresponding displacements of reference nodes of the girder and membrane model. 

The obtained errors are quite small indicating that the regression formulas (3) are suitable for 
employing them for the dynamic analysis with only the equivalent density value of the membrane being adjusted 
properly. 

4 CONCLUSIONS 
A formal approach to the reduction of a complex finite element structural model to the simpler one has 

been proposed. The procedure is based on penalty type target function minimization in the space of parameters 
of the reduced model. As a sample task, the synthesis of the reduced equivalent continuous membrane model, 
which imitates the behavior of the girder structure, has been solved.  

For the static analysis case the equivalent membrane parameter set has been determined at which the 
models worked satisfactorily in the case of coincident, as well as, non-coincident meshes of the reference and the 
reduced equivalent structure and at different loading configurations. Regression formulas for obtaining the 
equivalent parameters have been derived.  

The equivalent parameters obtained for static analysis have been demonstrated to work also in the 
dynamic analysis case, provided that proper equivalent mass density value of the equivalent reduced structures is 
adjusted. 
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